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Abstract— Application of piezoelectric flexural mechanical 
resonators such as tuning forks to accurate measurements of 
liquid physical properties is discussed. It was shown earlier that 
liquid properties such as viscosity, density and dielectric constant 
can be obtained by measuring the resonator AC impedance 
within certain frequency range and fitting it to the resonator 
equivalent circuit model [1]. Error sources for the liquid 
property measurements and their influence on the measured 
value are investigated. It is shown experimentally that the 
reproducibility of the viscosity and density measurements using 
this technique can meet and often exceed the one delivered by the 
well established analytical instrumentation. It is also 
demonstrated here that better performance is resulting from the 
use of the whole impedance curve over a frequency range, which 
produces better statistics and natural averaging of the noise. 

I. INTRODUCTION 
We have previously shown [1] that the complex impedance 

of a flexural resonator in a liquid environment could be 
represented by the equivalent circuit shown on Fig.1.  

The equivalent parameters Cs, R0, L0 represent respectively 
the mechanical compliance, loss and inertia of the resonator in 
vacuum. An additional contribution to the impedance Zl(ω)  
from the surrounding liquid is given by following relationship: 

( ) ( )iBAiZl ++= 1ωρηωρω , where ω is the operation 
frequency, ρ is the liquid density, η is the liquid viscosity, A 
and B are the geometry factors that depend only on the 
resonator geometry and mode of oscillation. 
 Cp is the electrical capacity of the resonator electrodes that is 
affected by the electrical properties of the surrounding liquid 
due to the fringing field. The changes in Cp can be represented 
by the following relationship: 

( ) ( ) ( ) εεε ∂∂−+= ppp CCC 11 , where Cp(1) is the 

electrodes capacitance in vacuum, ε is liquid permittivity, and 

dCp/dε is the sensitivity to changes in the electrical properties 
of the environment. 

It is evident from the equivalent circuit that the liquid 
property-dependent impedance component Zl(ω) is not directly 
accessible for the measurement, therefore it is necessary to 
know the values of other equivalent circuit components to be 
able to extract the value of the component of interest. It is 
usually done by measuring the resonator response in vacuum, 
where Zl(ω) = 0 and extracting these values using standard 
techniques. Geometry factors dCp/dε , A and B are calibrated 
by submerging the resonator in a liquid with known properties 
and fitting the measured resonator response to the equivalent 
circuit varying dCp/dε , A and B as free parameters. Measuring 
the properties of an unknown liquid is done by fitting the 
measured resonator response to the equivalent circuit varying 
ε , ρ and η as free parameters[2]. 

II. PRELIMINARY DISCUSSION 
The impedance of the flexural resonator depends on the 

frequency and following parameters: vacuum parameters Cs, 
R0, L0 ; geometry factors dCp/dε , A, B and liquid parameters of 
interest ε , ρ and η. Once the vacuum parameters and geometry 
factors are calibrated, the impedance of the resonator depends 
only on frequency and the three liquid properties that are found 
by measuring the resonator impedance in the unknown liquid. 
To be able to calculate the three unknown parameters the 
impedance value has to be measured at several different 
frequencies. In practice it is easier to measure the absolute 
value of the complex impedance, so from now on we will use 
Z(ω) to depict the absolute value of the complex resonator 
impedance. 

In the functional form we have a system of equations: 
( )ηρεωω ,,,nn ZZ = ,   (1) 

where Zωn is the impedance absolute value measured at a 
frequency ωn. Obviously, depending on properties of the Z(ω) 
function, it is necessary to have at least three measured values 
to be able to solve this system of equations for the unknown ε , 
ρ and η. Since the measured value of Zωn always includes 
some error ΔZ, the accuracy of the solution may strongly 
depend on the choice of the frequency points ωn at which the 
impedance values were measured. Any measurement error and 
the resulting errors in the parameters can be related in the 
following manner. Assuming that the impedance error 
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